Experiential Wayfinding Team Deliverables Summary

Industrial Systems Engineering and Management Department, National University of Singapore

Jasper Huang¹, Keying (Coco) Chen², Zhuo (Eric) Zhou³ ¹University of Pennsylvania, ²University of Toronto, ³University of Illinois Urbana-Champaign

Projects and Feature Development

Project	Features
NUS Maps	 Address saving Location-based Promotional Pop-ups Photo-based Location Input Sign Recognition and Location Input with Optical Character Recognition
E-scooter Errant Rider Detection	 Fall Detection using Bounding Box Aspect Ratio Analysis E-scooter and helmet object recognition (Shashwat, Kinshuk)
Capacitated Vehicle Routing Problem	 Minimize the total time travel for each vehicle Balance the time of all the vehicles to make sure that they come back around the same time

NUS Maps - Saving address of home, work, etc.

- Motivation:
 - Allow user to type less and get directions faster to commonly used locations
- How to use the feature:
 - Tap on designated address
 - Tap on the "i" button
 - Type the name of the address
 - Tap save

NUS Maps - Location-based Promotional Pop-ups

- Motivation:
 - Let users know about store promotions in the local area
- How to use the feature:
 - No direct user action required
 - Promotions will pop-up when user walks with certain distance of participating stores

NUS Maps - Photo-based Location Input

- Motivation:
 - Allow user to upload the location of a photo saved on the mobile device
- How to use the feature:
 - Tap on the "get direction with picture" button
 - Tap on the desired picture from the phone's camera roll
 - Tap "Choose"
 - Navigation information will pop up

NUS Maps - Sign Recognition and Location Input with Optical Character Recognition

- Motivation:
 - Allow user to type less and get directions faster to commonly used locations
- How to use the feature:
 - Tap on designated button
 - Take photo or select photo from library
 - Tap "ok"
- Backend:
 - TessaractOCR Engine from Google

E-scooter Fall Detection using Bounding Box Aspect Ratio Analysis

• Aspect ratio threshold to predict fall

 Aspect ratio rate of acceleration to distinguish between real fall versus crouching

Bounding Box Figures

Bbox Aspect Ratios against Time

14

Fall

Video Demos

Bounding Box First Derivative Figures

- Distinguishing between falling and crouching
 - Intuition is that falling would cause faster rate of bounding box compression

Other Works in Progress

- Background Subtraction
 - Issues recognizing human figures
- Object (human) tracking with kernelized correlation filter
 - Bounding box does not compress during fall
 - Computationally expensive (i.e. significant processing and lag time)